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Goal: find out how physicists are using software for data analysis \

Workflow from detector — reconstruction — AODs is understood.

Workflow from AODs — analysis — proposed papers is not.

» Surveys are great, except when they're not: response rate
can be correlated with the questions.

» Distributed collaborations: how do we know the survey
questions have reached everyone we want to ask?

» Can we get a more direct method?
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Direct method: look at their code!

GitHub API lets us query users and repositories (URL — JSON).

Can we identify “physicist” users?

» CMSSW has been on GitHub since 2013.
» Assumption: most users who fork CMSSW are CMS physicists.
» Then examine their non-fork repositories.

Why GitHub/CMS? Until recently, all (free) GitHub repos were public, making
them searchable by the API.

Large dataset: 3100 users with 19400 non-fork repos spanning 7 years.
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Plot #1: language choice &

Using GitHub's algorithm for determining a repo’s programming language.
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Plot #2: language choice by user

Same thing, but with average number of repos per user instead of total repos.
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Plot #3: search for package imports

Number of repos that match a search string (within C/C++ or Python/Jupyter files).
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Plot #4: what machine learning packages do they use? ' &

Same technique. Dominance of Scikit-Learn (over TensorFlow and Torch) is surprising.
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Plot #5: Did machine learning drive Python adoption?

Not really. Basic analysis tools (NumPy, Matplotlib, Pandas) outweigh Pythonic ML.
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